Advances on CIML2

Francesco Berti

UCL Crypto Group Microelectronics Laboratory

Limitation of the leak free implementation model

- No well defined security game
- Countermeasures aims to hide the key
- Hard to have security up to 2^{128} measurements
- Expensive (even 1000x)
- Replace the leak free assumption keeping CIML2
 - New hypothesis: strong unpredictability with leakage
- A CIML2-secure AE scheme using only once the leak free implemented TBC

CIML2 & eufL2

CIML2 for AE

eufL2 for MAC

(existentially unforgeability with leakage in both tag-generation and verification)

Components

Hash functions

- Collision resistance: hard find m, m's.t. H(m) = H(m')
- Range-oriented pre-image resistance: given a random y, hard find m s.t. H(m) = h

(Tweakable) block cipher ((T)BC)

- Pseudorandom: hard to distinguish its output from random ones
 - (strong) even having access to its inverse

block = n-bit string

tw

Н

m

h

UCL Crypto Group Microelectronics Laboratory

Components with leakage

Leveled implementation:

- Hash function
 - No protection
- BC/TBC:
 - Well protected (leak free):
 - key perfectly hided, outputs and inputs known and random

Components with leakage

Leveled implementation:

- Hash function
 - No protection
- BC/TBC:
 - Well protected (leak free):
 - key perfectly hided, outputs and inputs known and random
 - Weakly protected:
 - No protection for CIML2, some for confidentiality

Problem of leak-free

The leak free model has many advantages, but:

- No well-defined security game
 - Hard to simulate ideal leakage

Problem of leak-free

The leak free model has many advantages, but:

- No well-defined security game
 Hard to simulate ideal leakage
- Leak free implementations hides the key
- Hard to protect up to 2¹²⁸ measurements
- Expensive (even 1000x)

Strong unpredictability with leakage

Advantages of sUnpL

sUnpL:

- Well defined security game
- Reduced round (T)BC may be sUnpL
- Verifiable in laboratories
- Less demanding

Leak free:

- Easier to manipulate
- More versatile
 - Easier to use for confidentiality

Hash-then-BC (EDT)

$\epsilon_{\text{eufL2}} = \epsilon_{\text{cr}} + (q_{\text{V}} + 1)\epsilon_{\text{sUnpL}} + q_{\text{V}}\epsilon_{\text{pr}}\epsilon_{\text{sUnpL}}2^{n}$

UCL Crypto Group

Microelectronics Laboratory

July, 3-4 2019

Tight bound for Hash-then-BC

The term $\epsilon_{\rm pr}\epsilon_{\rm sUnpL}2^n$ is tight.

Consider the following hash function H and the following BC:

Hash functionsUnpL of the BC
$$H = \begin{cases} x || 0^{\frac{n}{2}} & \text{if } |m| = n \text{ and } m = 0^{\frac{n}{2}} || x \\ f(m) || 1 & \text{otherwise} \end{cases}$$
 $\Pr[y = x'] = \begin{cases} 2^{\frac{-n}{2}} & \text{if } y = w || 0^{\frac{n}{2}} \\ 0 & \text{otherwise} \end{cases}$ $\epsilon_{pr} = 2^{\frac{-n}{2}}$ $\epsilon_{sUnpL} = 2^{\frac{-n}{2}}$ Their composition is insecure

Tight bound for Hash-then-BC

The term $\epsilon_{\rm pr}\epsilon_{\rm sUnpL}2^n$ is tight.

Consider the following hash function H and the following BC:

• Problem:

- Interactions between the leakage of the (T)BC and the rangeoriented pre-image resistance of the hash function
- The attack is clearly artificial
- Needed:
 - Good theoretical model
 - Good definitions

Hash-then-TBC (TEDT/SPOOK)

$\epsilon_{\text{eufL2}} = \epsilon_{\text{cr}} + (q_{\text{V}} + 1)\epsilon_{\text{sUnpL}} + q_{\text{V}}\epsilon_{\text{pr}}\epsilon_{\text{sUnpL}}2^{n}$

UCL Crypto Group

Microelectronics Laboratory

sUnpL for confidentiality

If *B* unpredictable then $\pi(B)$ unpredictable, thus Spook is CPAL2

Chun and I observed that we can have confidentiality of Spook if the TBC is sUnpL.

Reducing the leak free calls

Outline:

CL Crypto Group

- Analyzing the structure of EDT
- Reminder of PSV
- Construction of CONCRETE
- Security claims
- Security proof

The structure of EDT

For decryption, recompute k_1 , then PSVDec, and h. Then compare it with $h' = F_k^{*,1,-1}(\tau)$.

UCL Crypto Group

Microelectronics Laboratory

July, 3-4 2019

PSV [CCS15]

Based on rekeying, CPAL2-secure

For decryption invert the place of m_i and c_i .

Ideas of CONCRETE

COmmit-e**NCR**ypt-sEnd-The-kEy

- Probabilistic scheme
- k_{1ep} selected uniformly at random
- k_{1ep} sent in the ciphertext
- In the ciphertext there is a commitment c_0 of k_{1ep}
- The encryption of k_{1ep} , c_{l+1} depends on all the ciphertext and the commitment

COmmit-eNCRypt-sEnd-The-kEy

July, 3-4 2019

CONCRETE is a probabilistic AE scheme. How it is built:

CONCRETE is a probabilistic AE scheme. How it is built:

CONCRETE is a probabilistic AE scheme. How it is built:

CONCRETE is a probabilistic AE scheme. How it is built:

Decryption: retrieve k_1 and use PSVDec

CONCRETE is a probabilistic AE scheme. How it is built:

For decryption: retrieve k_1 , recompute c_0 and check if correct, then, apply PSVDec.

CONCRETE is a probabilistic AE scheme. How it is built:

July, 3-4 2019

CONCRETE security

CONCRETE is

- AE secure
- CIML2 secure
- RUPAE secure
- CPAL2 secure

Commit

Consider a forgery $(c_0, ..., c_l, c_{l+1})$:

- if $(c_0, \dots c_l)$ is fresh then *h* is fresh (collision resistance).
 - Thus k_0 is fresh and $\Pr[c_0 = E_{k_0}(p_B)]$ is negligible
- If $(c_0, ..., c_l)$ is fresh then $((c_0, ..., c_l), c_{l+1})$
 - Thus $k_0 = F_k^{*,-1}(h, c_{l+1})$ is fresh and $\Pr[c_0 = E_{k_0}(p_B)]$ is negligible

CONCRETE is CIML2 secure, thus INT-CTXT.

- If k_0 is fresh then PSVEnc gives a random output
 - c_{l+1} s also fresh since *h* is fresh

RUPAE

If $(c_0, ..., c_l, c_{l+1})$ is fresh then (c_{l+1}, h) is fresh,

- Thus k_0 is fresh
 - Thus PSVDec gives a random output

Given by PSVEnc, since k is always fresh in encryption

Conclusion

- CIML2 does not need a leak free TBC
 It is enough strong unpredictability
- Spook may be CPAL even if the TBC is unpredictable
- CIML2-AE does not need 2 leak free calls to the TBC

Questions

THANK YOU

July, 3-4 2019

