

Low Latency Hardware Masking

On how to build (relatively) low-cost and *order-independent-latency* masked designs

Itamar Levi, June 2019

- Based on a work by (available on eprint):
 - G.Cassiers, B.Gregoire, I. Levi, F-X. Standaert.
- In Short:
 - Hardware efficient masking ...
 - low-latency, low rand. requirements, easy-to-use code/design
- On the long run:
 - We are using these methodologies and primitives with other technique,
 - to mask Clyde (from the NIST submission Spook) and,
 - for an on going work on composability...

Outline:

Motivation

- Necessary background masking, in HW/SW & tradeoffs
- Improved gadgets on HW
- Building a BC and evaluating its performance

Discussion

• Main motivation:

• Building *physically-secured* devices Currently, it is "possible". But, the cost is *high*...

• Main motivation:

• Building *physically-secured* devices Currently, it is "possible". But, the cost is *high*...

- The limiting factors:
 - Cheap
 - low energy/area requirements
 - Low-latency
 - Devices are highly accessed and exposed
- Now, zooming-in on high-order masking countermeasures..

Outline:

Motivation

- Necessary background masking, in HW/SW & tradeoffs
- Improved gadgets on HW
- Building a BC and evaluating its performance

Discussion

We need to build logic (e.g. S-box ...) $z = S(x \oplus k) = S(y)$

- Linear operations (i.e. XOR): O(d)
- Non-linear operations (i.e. AND): $O(d^2)$
 - Quadratic overheads + ↑#rand.

 a_1b_1 a_1b_2 a_1b_3 r_1 r_2 $[C_1]$ a_2b_2 $a_2b_3 +$ 0 $r_3 \Rightarrow c_2$ a_2b_1 $-r_1$ a_3b_2 a_3b_3 $[c_3]$ a_3b_1 $-r_2$ r_3 0 refreshing partial products compression

Backg

round

Motiv

ation

Gadge

ts

Arch.

Concl.

- ISW[Crypto03]: Secured AND gate
- Many extensions/ improvements

<u>Masking</u>: $x = x_1 \oplus x_2$

1-bit, *d*=2-shares example, Assuming:

- Independent leakages
- $n \sim N(\mu, \sigma)$.
- Univariate

Secret independent means .. $\mu_1 = \mu_2$ Secret dependent variance .. $\sigma_1 \neq \sigma_2$ $d=2 \rightarrow$ "secured" up to the (*d*-1) statistical order $\rightarrow \mu$

- Security models and definitions:
 - Probing model: The adversary cannot learn anything unless she measures with (at least) *d* probes $x = x_1 \oplus x_2 \oplus ... \oplus x_d \rightarrow x = x_1 \oplus x_2 \oplus ... \oplus x_d$
 - Proving a specific gadget is probing secure is not enough to *compose complex circuits with those instances and guaranty security*
 - e.g. shares-refreshing is needed between gadgets
 - What if we want to save some randomness/remove registers... Better definitions are needed.
 - Many simulation based definitions were propose to aid in this task: NI, SNI, **MIMO-SNI**, **PINI and f-NI**
 - The goal: if a gadget meets (one/some of) these definitions we can compose with it..
 - In this work we only make use of such composable gadgets

How to implement ?

- SW
 - Slow
 - Hard to get "cheap" randomness
 - Less energy efficient than dedicated HW
 - Hard to add special SCA countermeasures

- [ISW] "as is".
 - Is an "SNI" mult. Gadget
 - How to refresh/How to compose ?
- Double-SNI / Faust et-al.
 - One input refresh is enough..
 - Use another SNI-refresh (trivially, just use ISW)
 - How to implement this in HW ?

- [ISW] "as is".
 - Is an "SNI" mult. Gadget
 - How to refresh/How to compose ?
- Double-SNI / Faust et-al.
 - One input refresh is enough..
 - Use another SNI-refresh (trivially, just use ISW)
 - How to implement this in HW ?

- How to implement this on SW/HW ?
- SW operands are too big...
 - Need to chunks things up

1: $c_1 = a \cdot b$

۲

- How to implement this on SW/HW ?
- SW operands are too big...
 - Need to chunks things up

1: $c_1 = a \cdot b$ 2: $c_2 = a \cdot \operatorname{rot}(b, 1)$ 3: $c_3 = \operatorname{rot}(a, 1) \cdot b$

This is the (serial) HW counterpart..

(b) Serial Barth. et al . + one-input refresh (adapted to HW context)

- How to implement this on SW/HW ?
- SW operands are too big...
 - Need to chunks things up

1: $c_1 = a \cdot b$ 2: $c_2 = a \cdot \operatorname{rot}(b, 1)$ 3: $c_3 = \operatorname{rot}(a, 1) \cdot b$ 4: $d_1 = c_1 \oplus r$ 5: $d_2 = d_1 \oplus c_2$ 6: $d_3 = d_2 \oplus c_3$ 7: $d_4 = d_3 \oplus \operatorname{rot}(r, 1)$ 8: $x = d_4$ 9: return x

(b) Serial Barth. et al . + one-input refresh (adapted to HW context)

- How to implement this on HW ?
- HW operands are too big
 - Cool let's go parallel.. UMA
 - Did not consider needed refreshing ...

(c) UMA

- How to implement this on HW ?
- HW operands are too big
 - Cool let's go parallel.. UMA
 - Did not consider needed refreshing ...

Generally, this is the tradeoff we will get:

- HW
 - ~Order-indep. latency
 - Pay on that in Area..

- SW
 - Unacceptable latency with increasing *d* (for certain applications)

Fig. 2. Timings of ISW and CPRR schemes.

How Fast Can Higher-Order Masking Be in Software? [D. Goudarzi, M. Rivain]

10

8

Outline:

Motivation

- Necessary background masking, in HW/SW & tradeoffs
- Improved gadgets on HW
- Building a BC and evaluating its performance

Discussion

- So what will we do ?
 - 1. Build more HW efficient gadgets
 - 1. Multiplication
 - 2. Refresh
 - 2. Reduce randomness cost
 - 3. Utilize the asymmetry of the 1-input refresh for more efficient Sboxes
 - 4. Build a nice and generic/modular code & Implement a system

Multiplication

• Removing output register – still composable

Multiplication

A word on composability on FPGA and making sure we do not do dangerous things ...

Multiplication

 $a_1, a_2, a_3 \rightarrow a_1 a_2, a_1 a_3$ in a single LUT is DANGEROUS ! We have no control..

On many parts of the design we need to restrict the tool optimization.

- On the tool - prevent LUTs merging and FFs optimization, and on the design:

- Refresh we compare to..
 - Low cost HW version of ISW
 - The randomness cost is d(d-1)/2

Refresh

- Saving randomness (thanks Gaetan.C/Benjamin)
 - Some intuition
 - Verifying with MaskVerif
- Removing unnecessary computations off the critical path

Refresh

- Saving randomness (thanks Gaetan.C/Benjamin)
 - Some intuition
 - Verifying with MaskVerif
- Removing unnecessary computations off the critical path

Outline:

Motivation

- Necessary background masking, in HW/SW & tradeoffs
- Improved gadgets on HW
- Building a BC and evaluating its performance

Discussion

Building up Sboxes

 Make use of inherent asymmetry of one input

refresh

Gadge ts

Arch.

Concl.

Backg

round

Motiv

ation

Building up Sboxes

 Make use of inherent asymmetry of one input

refresh

AD $!= 2^{i}$ on one of the outputs Equal perf. and reduced #ANDs (c)

Building up Sboxes

- Make use of inherent
 asymmetry of one input
 refresh
 - To reduce latency
 - or, to reduce and

counts

Sboxes are typically logical (LUT) and not topological...

- Ko Stoffelen build a tool to generate circuits representations
- Input to a SAT solver
 - What the tool generates
 - Constrained structure equations with unknown coefficients coefficients
 - What does the SAT solve
 - Coefficients to match the LUT x,y pairs..
 - Let's modify the tool
 - Well start with simple 4bit Sboxes Depth (MD) 2, 4 ANDs

Gadge

ts

Arch.

Concl

Backg

round

Motiv

ation

Our test case - PRESENT

Motiv

ation

Backg

round

Gadge

ts

Arch.

Concl.

Fig. 8: PRESENT S-box AND depth 2 and 4 AND gates. (a) SAT solution without logical manipulation. (b) SAT solution with *asymmetric-structure*. XOR, AND and NOT are symbolized by \oplus , \odot and \sim , respectively.

- It is a generic solution
 - For
 - Fin

the

/hig

har

Additional AND depth 2, 4 ANDs, 4-bit (manipulated) \mathbf{C} S-boxes

many good Chaves	Rectangle S .	Rectangle	Class-13 S .	Class-13
many good spoxes	$\cdot q_0 = \sim x_0;$	S^{-1} .	$\cdot l_0 = x_0 \oplus x_1;$	S^{-1} .
ding solutions with	$ \begin{array}{c} \cdot \ l_0 = x_0 \oplus x_2 \\ \cdot \ l_1 = x_0 \oplus x_1 \\ \cdot \ l_3 = l_0 \oplus x_1 \\ \cdot \ q_1 = \sim (l_0); \end{array} $	$l_0 = x_1 \oplus x_2;$ $l_1 = l_0 \oplus x_3;$ $l_1 = x_1 \oplus x_2;$	$ \begin{array}{l} \cdot \ l_1 = l_0 \oplus x_2; \\ \cdot \ q_0 = x_1 \oplus x_3; \\ \cdot \ l_2 = q_0 \oplus x_2; \\ \cdot \ q_1 = \sim l_2; \end{array} $	$ \begin{array}{c} \cdot \ l_0 = x_1 \oplus x_3; \\ \cdot \ l_1 = l_0 \oplus x_2; \\ l_1 = x_1 \oplus x_2; \end{array} $
tool for larger ones	$\begin{array}{c} \cdot t_0 = q_0 \odot q_1; \\ \cdot q_2 = \sim (x_0 \oplus x_3 \oplus \vdots \\ t_0); \end{array}$	$t_2 = x_0 \oplus t_1,$ $t_0 = x_0 \odot x_3;$ $q_2 = \sim l_0 \oplus t_0;$ $q_3 = \alpha t_2 \oplus x_3;$	$ \begin{array}{l} \cdot \ \overline{t_0} = q_0 \odot q_1; \\ \cdot \ q_2 = l_1 \oplus x_3 \oplus t_0; \\ \cdot \ q_3 = \sim x_3; \end{array} $	$\begin{array}{l} \cdot \ i_2 = x_0 \oplus x_3, \\ \cdot \ q_0 = \sim l_0; \\ \cdot \ t_0 = q_0 \odot x_1; \\ \cdot \ q_0 = t_0 \oplus x_0 \oplus t_0; \end{array}$
gher Depth - becomes	$\begin{array}{c} \cdot \ q_3 = \sim (l_3); \\ \cdot \ t_1 = q_2 \odot q_3; \\ \cdot \ q_4 = \sim (l_0 \oplus x_3); \end{array}$	$\begin{array}{l} q_3 = \sim t_0 \oplus x_2, \\ t_1 = q_2 \odot q_3; \\ q_4 = \sim x_0 \oplus x_1; \\ t_2 = q_4 \odot x_2. \end{array}$	$ \begin{array}{l} \cdot t_1 = q_2 \odot q_3; \\ \cdot q_4 = \sim x_3; \\ \cdot t_2 = q_4 \odot x_2; \end{array} $	$\begin{array}{l} \cdot q_2 = \iota_2 \oplus \iota_2 \oplus \iota_0, \\ \cdot t_1 = q_2 \odot x_2; \\ \cdot q_4 = \sim l_2; \\ \cdot q_5 = r_0 \oplus l_0; \end{array}$
d.	$\begin{array}{l} \cdot \ q_5 = \sim x_2; \\ \cdot \ t_2 = q_4 \odot q_5; \\ \cdot \ q_6 = l_0 \oplus x_1 \oplus t_2; \end{array}$	$q_{6} = l_{0} \oplus t_{2};$ $q_{7} = \sim x_{2};$ $t_{3} = q_{6} \odot q_{7};$	$ \begin{array}{l} \cdot \ l_3 = t_0 \oplus t_2; \\ \cdot \ q_6 = l_1 \oplus t_2; \\ \cdot \ q_7 = \sim x_0; \end{array} $	$\begin{array}{l} \cdot t_2 = q_4 \odot q_5; \\ \cdot l_3 = t_0 \oplus t_2; \\ \cdot l_4 = l_3 \oplus t_1; \end{array}$
	$\begin{array}{c} \cdot \ q_{7} = l_{1} \oplus x_{3}; \\ \cdot \ t_{3} = q_{6} \odot q_{7}; \\ \cdot \ l_{2} = t_{1} \oplus t_{2}; \end{array}$	$y_0 = l_2 \oplus t_1 \oplus t_2;$ $y_1 = l_2 \oplus t_0;$ $y_2 = l_1 \oplus t_2;$	$\begin{array}{l} \cdot t_3 = q_6 \odot q_7; \\ \cdot y_0 = l_2 \oplus t_2 \oplus t_3; \\ \cdot y_1 = l_0 \oplus l_3; \end{array}$	$\begin{array}{l} \cdot \ q_6 = x_2 \oplus t_0; \\ \cdot \ q_7 = x_0 \oplus x_2; \\ \cdot \ t_2 = q_6 \odot q_7: \end{array}$
	$\begin{array}{l} \cdot \ y_0 = l_0 \oplus t_0 \oplus l_2; \\ \cdot \ y_1 = l_3 \oplus l_2 \oplus t_3; \\ \cdot \ y_2 = l_1 \oplus r_2 \oplus t_2 \end{array}$	$y_3 = l_1 \oplus t_1 \oplus t_3;$	$\begin{array}{l} \cdot \ y_2 = t_1 \oplus t_1 \oplus t_3; \\ \cdot \ y_3 = x_1 \oplus x_2 \oplus t_2; \end{array}$	$\begin{array}{c} \cdot y_0 = x_2 \oplus x_3 \oplus l_4 \oplus \\ t_3; \end{array}$
	$\cdot \begin{array}{l} y_2 = z_1 \oplus z_3 \oplus z_0, \\ y_3 = l_1 \oplus t_0 \oplus t_2; \end{array}$			$\begin{array}{l} \cdot \ y_1 = l_1 \oplus l_4; \\ \cdot \ y_2 = x_1 \oplus x_2 \oplus l_3; \\ \cdot \ y_3 = l_2 \oplus t_0; \end{array}$

Motiv ation Backg round ts Arch. Concl.

•	It is a generic solution	Skinny S.	Skinny S^{-1} .	iClass13 S.	\mathbf{Pr} øst S .
	 For many good Sboxes 	$\begin{array}{l} \cdot q_1 = x_0 \oplus x_2; \\ \cdot t_0 = x_3 \odot q_1; \\ \cdot q_2 = x_0 \oplus x_1 \oplus t_0; \\ \cdot t_1 = q_2 \odot x_0; \end{array}$	$q_1 = x_1 \oplus x_3;$ $q_0 = q_1 \oplus x_2;$ $t_0 = q_0 \odot q_1;$	$ \begin{array}{l} \cdot \ l_0 = x_2 \oplus x_3; \\ \cdot \ l_2 = x_0 \oplus x_3; \\ \cdot \ q_0 = \sim x_1; \\ \cdot \ t_0 = q_0 \odot x_3; \end{array} $	$\begin{array}{c} \cdot \ q_1 = x_0 \oplus x_2; \\ \cdot \ q_0 = q_1 \oplus x_1; \\ \cdot \ t_0 = q_2 \odot q_1 \end{array}$
	 Finding solutions with 	$\begin{array}{c} \cdot \ q_4 = x_3; \\ \cdot \ q_5 = -x_0 \oplus x_3; \\ \cdot \ t_2 = q_4 \odot q_5; \\ \vdots \\ t_2 = t_1 \oplus t_2 \end{array}$		$\begin{array}{l} \cdot q_2 = l_2 \oplus t_0; \\ \cdot q_3 = \sim x_2; \\ \cdot t_1 = q_2 \odot q_3; \end{array}$	$\begin{array}{l} \cdot \ t_0 = q_0 \odot q_1, \\ \cdot \ q_2 = \sim q_1 \oplus x_3 \oplus t_0; \\ \cdot \ t_1 = q_2 \odot x_0; \\ \cdot \ q_4 = x_0 \oplus x_1; \end{array}$
	the tool for larger ones	$ \begin{array}{c} \cdot t_0 = \iota_1 \oplus \iota_2, \\ \cdot q_7 = x_1 \oplus x_3; \\ \cdot q_6 = \sim q_1 \oplus q_7 \oplus t_2; \\ \cdot t_7 = q_7 \oplus q_7$		$\begin{array}{l} \cdot \ q_4 = \iota_0, \\ \cdot \ q_5 = \sim x_1; \\ \cdot \ t_2 = q_4 \odot q_5; \\ l_1 = t_2 \odot t_2 \end{array}$	$\begin{array}{l} \cdot \ q_5 = \sim x_0; \\ \cdot \ t_2 = q_4 \odot q_5; \\ \cdot \ l_1 = t_0 \oplus t_2; \end{array}$
	/higher Depth - becomes	$\begin{array}{c} y_{0} = x_{0} \oplus x_{3} \oplus l_{0}; \\ y_{1} = l_{0} \oplus t_{3}; \\ y_{2} = x_{1} \oplus t_{0} \oplus t_{0}; \\ \end{array}$		$\begin{array}{l} \cdot \ t_1 = t_0 \oplus t_2; \\ \cdot \ q_6 = \sim x_0 \oplus x_2 \oplus l_1; \\ \cdot \ q_7 = x_0 \oplus l_0; \\ \cdot \ t_2 = q_2 \oplus q_7; \end{array}$	$\begin{array}{c} \cdot \ q_6 = q_0 \oplus t_2; \\ \iota; \cdot \ t_3 = q_6 \odot x_3; \\ \cdot \ y_0 = x_1 \oplus x_2 \oplus t_2; \end{array}$
	hard.	$y_2 = x_1 \oplus t_0 \oplus t_2;$ $y_3 = x_2 \oplus t_2;$	$ \begin{array}{l} t_3 = q_6 \odot q_7; \\ y_0 = x_1 \oplus t_2; \\ y_1 = q_1 \oplus t_0 \oplus t_1 \oplus \end{array} $	$\begin{array}{c} t_3 = q_6 \odot q_7, \\ \cdot y_0 = q_7 \oplus x_1 \oplus t_1 \oplus t_2; \\ t_2; \\ \end{array}$	$\begin{array}{c} \cdot \ y_1 = q_0 \oplus x_3 \oplus t_1; \\ \oplus \cdot \ y_2 = q_1 \oplus t_0 \oplus t_1 \oplus \\ t_3; \end{array}$
	 And of coarse we have 	:	$ \begin{array}{l} t_3;\\ y_2=x_0\oplus l_1\oplus t_3;\\ y_3=x_0\oplus q_1\oplus t_0; \end{array} $	$\begin{array}{l} \cdot \ y_1 = q_7 \oplus t_2; \\ \cdot \ y_2 = l_0 \oplus l_1; \\ \cdot \ y_3 = l_2 \oplus t_1 \oplus t_3; \end{array}$	$\cdot \ y_3 = q_1 \oplus l_1 \oplus t_3;$

the SPOOK Sbox..

- And, a full architecture..
 - Parametric:
 - **SER**IALIZATION / d / refr.

Latency and randomness :

• Considerable latency and randomness savings for the whole cypher

Randomness throughput :

Higher security per area:

• We can get more per area, not just latency..

refresh (33%)

compute (33%)

compute (29%)

serialization & synch (57%)

Security evaluation:

- Just a taste... (d=2)
 - A fully parallel design .. Mean leakage 4000 2000 normalized current 0 -2000-4000round -6000500 200 300 400 0 time samples 128*d SBox SER 128*d SER ::: x16'SER SBox 128*d/ SER

Conclusions:

- Ultra low-latency masking from <u>composable</u> gadgets
- The gadgets enable considerable savings on higher hierarchical levels
- Reduced area utilization:
 - Larger security order /area
- Reduced randomness cost and randomness throughput (from e.g. a TRNG)

Thank you