
UCLouvain
Crypto-group

Itamar Levi,
June 2019

Low Latency Hardware Masking
On how to build (relatively) low-cost and order-independent-latency
masked designs

• Based on a work by (available on eprint):
• G.Cassiers, B.Gregoire, I. Levi, F-X. Standaert.

• In Short:
• Hardware efficient masking…

• low-latency, low rand. requirements, easy-to-use code/design

• On the long run:
• We are using these methodologies and primitives with other technique,

• to mask Clyde (from the NIST submission Spook) and,
• for an on going work on composability…

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Outline:

Motivation

• Necessary background – masking, in HW/SW & tradeoffs
• Improved gadgets on HW
• Building a BC and evaluating its performance

Discussion

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• Main motivation:
• Building physically-secured devices
Currently, it is “possible”. But, the cost is high…

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• Main motivation:
• Building physically-secured devices
Currently, it is “possible”. But, the cost is high…

• The limiting factors:
• Cheap
• low energy/area requirements
• Low-latency
• Devices are highly accessed and exposed

• Now, zooming-in on high-order masking countermeasures..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Outline:

Motivation

• Necessary background – masking, in HW/SW & tradeoffs
• Improved gadgets on HW
• Building a BC and evaluating its performance

Discussion

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Masking: + independence condition.

We need to build logic (e.g. S−box …)

• Linear operations (i.e. XOR): O(d)

• Non-linear operations (i.e. AND): O(d2)

• Quadratic overheads + ↑#rand.

• ISW[Crypto03]: Secured AND gate

• Many extensions/ improvements

ଵ ଶ … ௗ

rand.

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Masking:

0 1 2

L1,2= W(x1)+ W(x2)+n

Pr(L|x)

L

x1 x2

x=1
{x1,x2}=10,01

x=0
{x1,x2}=00

x=0
{x1,x2}=11

Secret independent means .. µ1= µ2
Secret dependent variance .. σ1≠ σ2

d=2  “secured” up to the (d-1) statistical order µ

ଵ ଶ

1-bit, d=2-shares example, Assuming:
• Independent leakages
• 𝑛~𝛮(𝜇, 𝜎).
• Univariate

L= W(x1)+ W(x2)+n

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• Security models and definitions:
• Probing model: The adversary cannot learn anything unless she

measures with (at least) d probes

• Proving a specific gadget is probing secure is not enough to compose
complex circuits with those instances and guaranty security

• e.g. shares-refreshing is needed between gadgets
• What if we want to save some randomness/ remove registers…

Better definitions are needed.

• Many simulation based definitions were propose to aid in this task:
NI, SNI, MIMO-SNI, PINI and f-NI

• The goal: if a gadget meets (one/some of) these
definitions we can compose with it..

• In this work we only make use of such composable gadgets

ଵ ଶ … ௗ ଵ ଶ … ௗ

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

How to implement ?

• SW
• Slow
• Hard to get “cheap” randomness
• Less energy efficient than dedicated HW
• Hard to add special SCA countermeasures

• HW / future ‘SW’..
• Fast
• Cheap True randomness
• Flexible – we can stack additional countermeasures

FPGA

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• [ISW] – “as is”.
• Is an “SNI” mult. Gadget
• How to refresh/How to compose ?

• Double-SNI / Faust et-al.
• One input refresh is enough..
• Use another SNI-refresh (trivially, just use ISW)

• How to implement this in HW ?

refresh

refresh

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• [ISW] – “as is”.
• Is an “SNI” mult. Gadget
• How to refresh/How to compose ?

• Double-SNI / Faust et-al.
• One input refresh is enough..
• Use another SNI-refresh (trivially, just use ISW)

• How to implement this in HW ?

refresh

refresh

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

3d regs
d(d+1) xors
 fair comparison

2d regs
d(d+1) xors
1 cycle on DP

• How to implement this on SW/HW ?

• SW – operands are too big…
• Need to chunks things up This is the (serial) HW counterpart..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• How to implement this on SW/HW ?

• SW – operands are too big…
• Need to chunks things up This is the (serial) HW counterpart..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• How to implement this on SW/HW ?

• SW – operands are too big…
• Need to chunks things up This is the (serial) HW counterpart..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• How to implement this on HW ?

• HW – operands are too big ….
• Cool – let’s go parallel.. UMA
• Did not consider needed refreshing …

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• How to implement this on HW ?

• HW – operands are too big ….
• Cool – let’s go parallel.. UMA
• Did not consider needed refreshing …

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Generally, this is the tradeoff we will get:

• HW
• ~Order-indep. latency
• Pay on that in Area..

• SW
• Unacceptable latency with increasing d (for certain applications)

How Fast Can Higher-Order Masking Be in Software?
[D. Goudarzi, M. Rivain]

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

A unified masking approach
[Hannes Gross, Stefan Mangard]

Outline:

Motivation

• Necessary background – masking, in HW/SW & tradeoffs
• Improved gadgets on HW
• Building a BC and evaluating its performance

Discussion

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• So what will we do ?
1. Build more HW efficient gadgets

1. Multiplication
2. Refresh

2. Reduce randomness cost
3. Utilize the asymmetry of the 1-input refresh for more efficient

Sboxes
4. Build a nice and generic/modular code & Implement a system

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Multiplication

• Removing output register – still composable

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Multiplication

A word on composability on FPGA and making sure we do not do dangerous things …

a1, a2 ,a3  a1a2 ,a1a3 in a single LUT is DANGEROUS ! We have no control..

On many parts of the design we need to restrict the tool optimization

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Multiplication

a1, a2 ,a3  a1a2 ,a1a3 in a single LUT is DANGEROUS ! We have no control..

On many parts of the design we need to restrict the tool optimization.

- On the tool - prevent LUTs merging and FFs optimization, and on the design:

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• Refresh – we compare to..

• Low cost HW version of ISW

• The randomness cost is d(d-1)/2

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

 fair comparison

Refresh

• Saving randomness (thanks

Gaetan.C/Benjamin)

• Some intuition

• Verifying with MaskVerif

• Removing unnecessary

computations off the critical path

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Refresh

• Saving randomness (thanks

Gaetan.C/Benjamin)

• Some intuition

• Verifying with MaskVerif

• Removing unnecessary

computations off the critical path

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Outline:

Motivation

• Necessary background – masking, in HW/SW & tradeoffs
• Improved gadgets on HW
• Building a BC and evaluating its performance

Discussion

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Building up Sboxes

• Make use of inherent

asymmetry of one input

refresh

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Building up Sboxes

• Make use of inherent

asymmetry of one input

refresh

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Building up Sboxes

• Make use of inherent

asymmetry of one input

refresh

• To reduce latency

• or, to reduce and

counts

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

a1a2a3

Sboxes are typically logical (LUT) and not topological…

• Ko Stoffelen - build a tool to generate circuits representations

• Input to a SAT solver

• What the tool generates

• Constrained structure equations with

unknown coefficients coefficients

• What does the SAT solve

• Coefficients to match the LUT x,y pairs..

• Let’s modify the tool ….

• Well start with simple 4bit Sboxes - Depth (MD) 2, 4 ANDs

• Our test case - PRESENT

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• It is a generic solution

• For many good Sboxes

• Finding solutions with

the tool for larger ones

/higher Depth - becomes

hard.

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Objectives : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

• It is a generic solution

• For many good Sboxes

• Finding solutions with

the tool for larger ones

/higher Depth - becomes

hard.

• And of coarse we have

the SPOOK Sbox..

• And, a full architecture..

• Parametric:

• SERIALIZATION / d / refr.

Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Spartan 6 LX75 FPGA, Xilinx

• SERIALIZATION

• Fully parallel (SER=1)

• 5 cycles/round

Area bottleneck : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

d=2 d=3 d=4 d=5 d=6 d=10

…
…
…
…
…
…
…
…

25% limit 50% limit ~90% limit

SER=2
6 cycles/round

SER=4
8 cycles/round

SER=8
12 cycles/round

d=10
~70% limit

d=10
~40% limit

d=10
~25% limit

• Considerable latency and randomness savings for the whole cypher

Latency and randomness : Concl.Arch.Gadge
ts

Backg
round

Motiv
ation

Concl.Arch.Gadge
ts

Backg
round

Motiv
ationRandomness throughput :

• We can get more per area, not just latency..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ationHigher security per area:

• Less on computation and considerably less on refresh

Concl.Arch.Gadge
ts

Backg
round

Motiv
ationLatency break-down:

• Just a taste… (d=2)

• A fully parallel design ..

Concl.Arch.Gadge
ts

Backg
round

Motiv
ationSecurity evaluation:

round

• Ultra low-latency masking from composable gadgets

• The gadgets enable considerable savings on higher hierarchical levels

• Reduced area utilization:

• Larger security order /area

• Reduced randomness cost and randomness throughput (from e.g. a TRNG)

Conclusions:

Thank you

