A Survey of Combined Countermeasures against Passive and Active SCAs

Weijia Wang

Outline

- Backgrounds
- Problem description
- Security models
 - State-of-the-arts
 - Challenges
- Schemes

UCL Crypto Group

- State-of-the-arts
- Challenges

Backgrounds

- Passive side-channel attacks: Read 'hidden' signals
 - timing, power consumption, electromagnetic emission, ...
 - masking (most investigated countermeasure) :
 - Sensitive variable x is encoded into d shares, and any d-1 shares are independent of x
- Active side-channel attacks: Insertion of faults
 - power glitches, laser, ...

UCL Crypto Group

- Combined side-channel attacks
 - Attackers have the ability to mount both passive and active attacks

Problem description

- How to defend against the passive and active attacks:
 - Focus:
 - Protection of the algorithm (without relying on e.g. shields or detectors on the chip)
 - In a formal security model

 Only masking does not work (and even enlarge the attack surface to insert a fault in the computation)

Security Models

Security models: state-of-the-arts

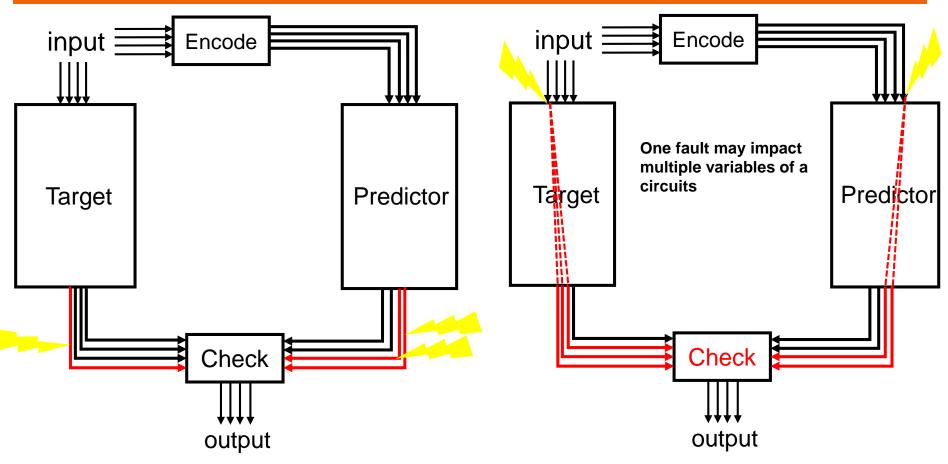
	Passive	Probing security		Tile-probe-and-
Active		SW.	HD.	fault-model (MPC)
Fault coverage (detectable faults number / possible faults number)			[SMG16]	
k-order active secure	Reset attacks	[IPS06]		
	General attacks	[IPS06] [DN19]		
Tile-probe-and-fault-model (MPC)				[RMB18]

[DN19] Dhooghe, S., Nikova, S. My Gadget Just Cares For Me-How NINA Can Prove Security Against Combined Attacks.. IACR Cryptology ePrint Archive, 2019

[RMB18] Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.. CAPA: the spirit of beaver against physical attacks. CRYPTO 2018.

[IPS06] Ishai, Y., Prabhakaran, M., Sahai, A., & Wagner, D.. Private circuits II: keeping secrets in tamperable circuits. EUROCRYPT 2006

UCL Crypto Group

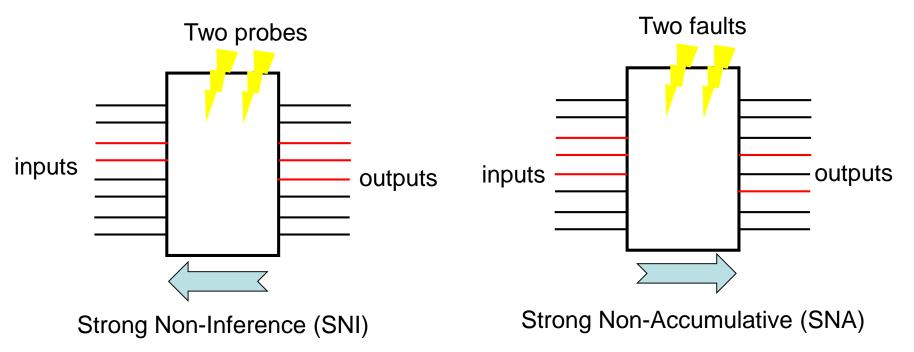

[SMG16] Schneider, T., Moradi, A., & Güneysu, T.. ParTI–towards combined hardware countermeasures against side-channel and fault-injection attacks. CRYPTO 2016.

[CN16] De Cnudde, T., Nikova, S.. More efficient private circuits II through threshold implementations. FTDC 2016.

Security models: state-of-the-arts

Composable security model for combined attacks -- The issue of fault propagation

Basic Structure of code-based concurrent error detection schemes



Security models: state-of-the-arts

Composable security model for combined attacks [DN19]

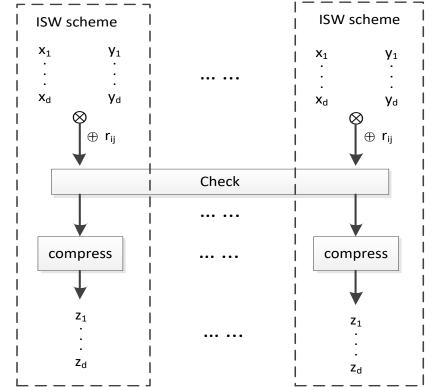
 Strong Non-Interference and Non-Accumulation (SNINA) = SNI + SNA

UCL Crypto Group

Security models: challenges

- Challenges are mainly on active security
 - What type of security we need for active attacks?
 - Fault coverage? k order fault security? or in between?
 - It is important to realistically estimate the power of potential FI attackers
 - Composable combined security model
 - Formal verification
 - More efficient

Schemes


Schemes: state-of-the-arts

Duplicated Boolean masking [IPS06] [DN19]

- This scheme is secure in SNINA
- But suffers from symmetric errors
- Complexity for the multiplication:
 - Computation: O(kd²)
 - Randomness: d²/2

UCL Crypto Group

- k: fault security order
- d: probing security order

[IPS06] Ishai, Y., Prabhakaran, M., Sahai, A., & Wagner, D.. Private circuits II: keeping secrets in tamperable circuits. EUROCRYPT 2006

[DN19] Dhooghe, S., Nikova, S. My Gadget Just Cares For Me-How NINA Can Prove Security Against Combined Attacks.. IACR Cryptology ePrint Archive, 2019

Schemes: state-of-the-arts

Combined secure polynomial masking [DN19]

Based on polynomial masking

UCL Crypto Group

- Needs (k+d+1) shares for d and k orders security for passive and active attacks (better than duplication)
- This scheme is secure in SNINA
- Complexity for the multiplication: O((k+d)²)
 For both computation and randomness

[DN19] Dhooghe, S., Nikova, S. My Gadget Just Cares For Me-How NINA Can Prove Security Against Combined Attacks.. IACR Cryptology ePrint Archive, 2019

Schemes: state-of-the-arts ParTI [SMG16]

Hardware

UCL Crypto Group

- First-order secure Threshold Implementation (TI)
- Code-based concurrent error detection scheme
 - The fault security is assessed by fault coverage
 - Suffer from the fault propagation issue
- LED instance: 12% bigger of area than TI + simple duplication
- Leaving out a formal adversary model

[SMG16] Schneider, T., Moradi, A., & Güneysu, T.. ParTI–towards combined hardware countermeasures against side-channel and fault-injection attacks. CRYPTO 2016.

Schemes: state-of-the-arts CAPA [RMB18]

- Draws inspiration from MPC protocol SPDZ
- More secure: all the wires in a partition can be probed and fault
- Both software and hardware
- Cost: heavy (for both computation and randomness)
- Recent improvement: M & M [MAN19]
 - More efficient

UCL Crypto Group

- Leaving out the high security property

[RMB18] Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.. CAPA: the spirit of beaver against physical attacks. CRYPTO 2018. [MAN19] De Meyer, L., Arribas, V., Nikova, S., Nikov, V., & Rijmen, V.. M&M: Masks and Macs against physical attacks. CHES 2019.

Schemes: challenges

- How to improve the efficiency (without degrading the security)?
 - Randomness Complexity
 - Computational Complexity
- Mode of operation: leakage + fault resilient?

Thanks for your attention Q & A ?

