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Invariant Attacks – Round Constants



RUHR-UNIVERSITÄT BOCHUM

Invariant Attacks

Main Idea: Invariant Subspaces
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Invariant Subspace Attacks [Lea+11] (CRYPTO’11)

Let U ⊆ Fn
2 , c, d ∈ U⊥, and F : Fn

2 → F
n
2 . Then U is an invariant subspace (IS) if and only if

F(U+c) = U+d and all round keys in U+(c + d) are weak keys.
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Invariant Attacks
A Short History

[Lea+11]

Publication of IS attack,
breaking PRINTcipher

[LMR15]

Generic Algorithm to find
ISes, breaking Robin,

iSCREAM, Zorro

[Guo+16]

IS attack breaking
Midori64

[TLS16]

Invariant Set
generalisation, breaking

SCREAM, iSCREAM,
Midori64

[Bei+17]

Proving resistance for
Invariant attacks

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 5



RUHR-UNIVERSITÄT BOCHUM

Invariant Attacks
Proving Resistance

Goal: Apply security argument from

C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. “Proving Resistance Against Invariant
Attacks: How to Choose the Round Constants”. In: CRYPTO 2017, Part II. 2017. doi:
10.1007/978-3-319-63715-0_22. iacr: 2017/463.

What do we get from this?

Non-existence of invariants for both parts of the round function (S-box and linear layer)

Issues

Other partitionings of the round function might allow invariants (Christof B. found examples)
Not clear how to prove the general absence of invariant attacks (best we can currently prove)
All known attacks exploit exactly this structure (splitting in S-box and linear layer)
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Invariant Attacks
Recap Security Argument (I)

Observation

Invariants for the linear layer
L and round key addition have
to contain special linear
structures.
Denote by c1, . . . , ct the round
constant differences for
rounds with the same round
key.
Then the linear structures of
any invariant have to contain
WL(c1, . . . , ct).

Linear Structures
Let f : Fn

2 → F2. Then its linear structures are

LS := {a | f (x) + f (x + a) is constant} .

The smallest L-invariant subspace

WL(c1, . . . , ct) is the smallest L-invariant subspace of Fn
2

containing all ci

⇔∀x ∈WL(c1, . . . , ct) : L(x) ∈WL(c1, . . . , ct)

The simple case

If WL(c1, . . . , ct) = Fn
2 , only trivial invariants for L and key

addition are possible (constant 0 and 1 function).
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Invariant Attacks
Recap Security Argument (II)

Application to Clyde

Find the important round constant differences:
(the differences where the same tweakey is added)

Set of RC differences D below
with |D|= 20

x R R R R

RRRR

R R R R y

TK(0) TK(1) TK(2)

TK(0)TK(1)

TK(2) TK(0)

W (0) W (1) W (2) W (3)

W (4)W (5)W (6)W (7)

W (8) W (9) W (10) W (11)

D = DTK(0) ∪ DTK(1) ∪ DTK(2) ∪ D0

DTK(0) = {0+W (5), 0+W (11), W (5) +W (11)}
DTK(1) = {W (1) +W (7)}
DTK(2) = {W (3) +W (9)}

D0 =
�

a+ b
�

� a, b ∈ D′, a 6= b
	

D′ = {W (0), W (2), W (4), W (6), W (8), W (10)}
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Invariant Attacks
Application to Clyde

Computing WL is efficiently doable (takes ≈ 10 seconds on my laptop).
For the round constants chosen for Clyde, dim WL(D) = 128= n.

Thus, we can apply:

Proposition 2 [Bei+17]

Suppose that the dimension of WL(D) is n. Then any invariant g is constant (and thus trivial).

We conclude that we cannot find any non-trivial g for Clyde which is at the same time invariant
for the S-box layer and for the linear layer.
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Invariant Attacks
Improvable?

Bounding the dimension of WL , [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q i its invariant factors. Then

max
c1,...,ct∈Fn

2

dim WL(c1, . . . , ct) =
t
∑

i=1

degQ i .

Application to Clyde

Compute invariant factors of linear layer:
This gives a lower bound on the number of rounds:

4× (x32 + 1)
3 steps/6 rounds

3 stps/6 rnds: dim WL(c1, . . . , c4) = 96

4 stps/8 rnds: dim WL(c1, . . . , c8) = 128

5 stps/10 rnds: dim WL(c1, . . . , c13) = 128

6 stps/12 rnds: dim WL(c1, . . . , c20) = 128
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Section 2

Subspace Trails

Probability 1 Truncated Differentials
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Subspace Trails

Main Idea: Subspace Trails

U+ar

. . .

U+a1

U

V+
b s

. . .

V+
b 1

V

F

W
+c

t

. . .

W
+c

1
W

F . . .

Subspace Trail Cryptanalysis [GRR16] (FSE’16)

Let U0, . . . , Ur ⊆ Fn
2 , and F : Fn

2 → F
n
2 . Then these form a subspace trail (ST), U0

F
→ ·· ·

F
→ Ur , iff

∀a ∈ U⊥i : ∃b ∈ U⊥i+1 : F(Ui+a) ⊆ Ui+1+b
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Computing Subspace Trails

Given a starting subspace U , we can effi-
ciently compute the corresponding longest
subspace trail.

Lemma

Let U
F
→ V be a ST. Then for all u ∈ U and

all x : F(x) + F(x + u) ∈ V .

Proof

U+as

. . .

U

V+
b t

. . .

V

·x
·

F(x)F

·x + u

·
F(x + u)

u

·

v
·

Computing the subspace trail

To compute the next subspace, we have to compute the image of the derivatives.
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Computing Subspace Trails
Algorithm

Compute Subspace Trails

Input: A nonlinear, bijective function F : Fn
2 → F

n
2 and a subspace U .

Output: The longest ST starting in U over F .

1 function Compute Trail(F , U)
2 if dim(U) = n then
3 return U
4 V ← ;
5 for ui basis vectors of U do
6 for enough x ∈R Fn

2 do . e. g. n+ 20 x ’s are enough
7 V ← V ∪∆ui

(F)(x) .∆a(F)(x) := F(x) + F(x + a)

8 V ← span(V )
9 return the subspace trail U → Compute Trail(F, V )

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 14
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Subspace Trails
Proving Resistance

Goal: Apply security argument from

G. Leander, C. Tezcan, and F. Wiemer. “Searching for Subspace Trails and Truncated
Differentials”. In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.

What do we get from this?

(Tight) upper bound on the length of any ST for an SPN construction

Why is the Compute Trail algorithm not enough?

Exhaustively checking all possible starting points is to costly.
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Subspace Trails
How to bound the length of any subspace trail

Observation

S
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Algorithm Idea

Compute the subspace trails for any starting point
wi,α ∈W , with

wi,α := (0, . . . , 0
︸ ︷︷ ︸

i−1

,α, 0, . . . , 0)

Complexity (Size of W )

For an S-box layer S : Fkn
2 → F

kn
2 with k S-boxes, each n-bit:

|W |= k · (2n − 1)

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 16



RUHR-UNIVERSITÄT BOCHUM

Subspace Trails
How to bound the length of any subspace trail

Observation

S

S

S

S

U V 3



















0

α

0

0



















Algorithm Idea

Compute the subspace trails for any starting point
wi,α ∈W , with

wi,α := (0, . . . , 0
︸ ︷︷ ︸

i−1

,α, 0, . . . , 0)

Complexity (Size of W )

For an S-box layer S : Fkn
2 → F

kn
2 with k S-boxes, each n-bit:

|W |= k · (2n − 1)

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 16



RUHR-UNIVERSITÄT BOCHUM

Subspace Trails
Algorithm

Generic Subspace Trail Search

Input: A linear layer matrix M : Fn·k×n·k
2 , and an S-box S : Fn

2 → F
n
2 .

Output: A bound on the length of all STs over F = M ◦ Sk .

1 function Generic Subspace Trail Length(M , S)
2 empty list L
3 for possible initial subspaces represented by wi,α ∈W do . Overall k · (2n − 1) iterations
4 L.append(Compute Trail(Sk ◦M ,

�

wi,α

	

)) . Sk denotes the S-box layer
5 returnmax {len(t) | t ∈ L}

Overall Complexity

Algorithm Compute Trail Generic Subspace Trail Length Overall Clyde Shadow
Complexity O(k2n2) O(k2n) O(k3n22n) 223 229
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Subspace Trails
Results

Clyde

Generic Subspace Trail Length Bound:
2 (+1) Rounds

Shadow

Generic Subspace Trail Length Bound:
4 (+1) Rounds
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Division Property

Main Idea: (Bit-based) Division Property

Generalisation of Integral and Higher Order Differential attacks (Degree-based)
Captures properties of bits in a set (e. g. combination of bits is balanced)
For standard integral attacks: zero-sum, all or constant
The Division Property allows to capture properties “in between” these
(even if they do not have such a nice description as e. g. the zero-sum)

Bit-based Division Property

Given X , K ⊆ Fn
2 . X has Division Property (DP) Dn

K , if for all u´ K :
∑

x∈X

xu =
∑

x∈X

n
∏

i=1

xui
i = 0.

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 20



RUHR-UNIVERSITÄT BOCHUM

Division Property
Related Work

[Tod15b]

Publication of DP attack

[Tod15a]

DP attack breaking
full Misty

[BC16]

Analysis of DP, S-box
properties to resist

this attack

[TM16]

Bit-based DP

[Xia+16]

MILP based search of
DP distinguishers

[Tod+17]
[Wan+18]

DP based Cube attacks
on stream ciphers
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Division Trails

Propagating (Bit-Based) Division Properties

copy : x 7→ (x , x)

D1
x

copy
→

¨D2
(0,0) if x = 0

D2
(0,1),(1,0) if x = 1

xor : (x , y) 7→ x + y

D2
(k0,k1)

xor
→D1

k0+k1

S-box S : Fn
2 → F

n
2 :

see [Xia+16, Algorithm 2],
computes for all u ∈ Fn

2

Dn
u

S
→Dn

V

s. t. u→ v is valid ∀v ∈ V .

Division Trail
Given a round function F : Fn

2 → F
n
2 and Ki ⊆ Fn

2 . Assume that

∀ki ∈ Ki : ∃ki+1 ∈ Ki+1 s. t. Dn
ki

F
→Dn

ki+1
.

We call such a (k0, k1, . . . , kr) an r-round Division Trail (DT).
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Division Property

Goal: Apply security argument from

Z. Xiang, W. Zhang, Z. Bao, and D. Lin. “Applying MILP Method to Searching Integral
Distinguishers Based on Division Property for 6 Lightweight Block Ciphers”. In:
ASIACRYPT 2016, Part I. 2016. doi: 10.1007/978-3-662-53887-6_24. iacr:
2016/857.

What do we get from this?

Number of rounds for which a division property/integral distinguisher exists.

Approach (similiar to Subspace Trails)

Pick starting DPs in a way that covers all possibilities
Model division trail propagations as MILP
Find solutions for this over increasing number of rounds
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Division Property
MILP model

Mixed Integer Linear Programs

Typical description of a MILP

Objective max/min c>x
linear inequalities subject to Ax ¶ b

A, b, c known coefficients
x unknown variables (R, Z, or {0, 1})

Applying MILPs to find Division Properties

Goal: Model Division Property as a MILP

We need:
Objective function
Starting DP
Propagation Rules
Stopping Rule

Similar approach

Using MILPs to find single differential trails and to estimate differentials basically same approach

We can now model the DP search for Clyde.
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Division Property
Modeling Propagation Rules: copy

Based on eprint’s 2016/392, 2016/811, and 2016/1101

Propagation Rule

copy : x 7→ (x , x)

D1
x

copy
→

¨D2
(0,0) if x = 0

D2
(0,1),(1,0) if x = 1

Valid Transitions

1 (0)
copy
→ (0,0)

2 (1)
copy
→ (0,1)

3 (1)
copy
→ (1,0)

MILP Model

Given division trail (x)
copy
→ (y, z)

Propagation represented by the (in)equality

x − y − z = 0

x , y, z ∈ {0,1}
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Division Property
Modeling Propagation Rules: xor

Based on eprint’s 2016/392, 2016/811, and 2016/1101

Propagation Rule

xor : (x , y) 7→ x + y

D2
(k0,k1)

xor
→D1

k0+k1

Valid Transitions

1 (0,0)
xor
→ (0)

2 (1,0)
xor
→ (1)

3 (0,1)
xor
→ (1)

MILP Model

Given division trail (x , y)
xor
→ (z)

Propagation represented by the (in)equality:

x + y − z = 0

x , y, z ∈ {0,1}
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Division Property
Modeling Propagation Rules: xor
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Division Property
Modeling Propagation Rules: S-box

Based on approach by Sun et al. [Sun+14] for differential case

Propagation Rule

S-box S : Fn
2 → F

n
2 :

see [Xia+16, Algorithm 2],
computes for all u ∈ Fn

2

Dn
u

S
→Dn

V

Valid Transitions

1 u
S
→ v1

... · · ·
k u

S
→ vk

for vi ∈ V

MILP Model

Interpret set of all valid (u, v) ∈ F2n
2 as polyhedron

Get inequalities from its H-representation
Choose inequalities for model by

Greedy Approach [Sun+14]
MILP Approach [ST17] (seems to be slower)
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Division Property
MILP model

Mixed Integer Linear Programs

Typical description of a MILP

Objective max/min c>x
linear inequalities subject to Ax ¶ b

A, b, c known coefficients
x unknown variables (R, Z, or {0, 1})

Applying MILPs to find Division Properties

Goal: Model Division Property as a MILP

We need:
Objective function
Starting DP
Propagation Rules
Stopping Rule

Similar approach

Using MILPs to find single differential trails and to estimate differentials basically same approach

We can now model the DP search for Clyde.
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Division Property
Objective, Start, Stop

What are we looking for?

Unit vectors in output division property correspond to unbalanced bits.
We have to exclude these from our MILP model.
When minimising the sum over the output variables, we find these unit vectors first.

Objective

minimise x r
0 + x r

1 + · · ·+ x r
n
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Division Property
Objective, Start, Stop

Possible Starting DPs

Similar to subspace trail approach, we need to reduce the starting DPs needed to be checked.
[SWW17, Proposition 2] showed that given a first initial DP k0, for any initial DP k1 which is
element-wise smaller than k0 the following holds:
If DP starting in k0 does not have a DP after r rounds, the same holds for DP starting in k1.
This reduces the initial DPs we have to check to n for an n-bit cipher.

Initial DPs
All k ∈ Fn

2 with hamming weight n− 1 are possible initial DPs
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Division Property
Objective, Start, Stop

Model Stopping Rule

Input: A Division Property MILP model M
Output: A distinguisher exists or not

1 function DP Distinguisher Search(M)
2 whileM has feasible solution do
3 Solve M

4 if objective value = 1 then
5 Let solution = ei
6 Add constraint x r

i = 0 to M

7 else
8 return Found distinguisher

9 return No distinguisher exists

Stopping Rule

Unit vectors in output division
property correspond to
unbalanced bits.
We have to exclude these from our
MILP model.
If no more unit vectors where
found, but MILP still has feasible
solution, a distinguisher exists.
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Division Property
MILP model

Mixed Integer Linear Programs

Typical description of a MILP

Objective max/min c>x
linear inequalities subject to Ax ¶ b

A, b, c known coefficients
x unknown variables (R, Z, or {0, 1})

Applying MILPs to find Division Properties

Goal: Model Division Property as a MILP

We need:
Objective function
Starting DP
Propagation Rules
Stopping Rule

Similar approach

Using MILPs to find single differential trails and to estimate differentials basically same approach

We can now model the DP search for Clyde.
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Division Property
Results

Division Property distinguisher for Clyde

8 Rounds
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Conclusion
Thanks for your attention!

Future Work/Cryptanalysis

Cryptagraph [HV18]
Post cryptanalysis results on mailinglist?
Eprint Write-Up?

pfasante.github.io/talk/spook_cryptanalysis
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